Hacking Techniques &
Intrusion Detection

Fall 2012/2013

Dr. Ali Al-Shemery
aka: BIn@ry

Software Exploitation

Prepared by:

Dr. Ali Al-Shemery
Mr. Shadi Naif

Outline - Part

Software Exploitation Intro.
CPU Instructions & Registers
Functions, High Level View
Stacks and Stack Frames
Memory Addressing
Managing Stack Frames
Functions, Low Level View
Understanding the Process
Call Types
Assembly Language
General Trace

Code Optimizations
Stack Reliability

Software Exploitation Intro.

A program is made of a set of rules following
a certain execution flow that tells the
computer what to do.

Exploiting the program (Goal):

Getting the computer to do what you want it to

do, even if the program was designed to prevent
that action

First documented attack 1972 (US Air Force
Study).

Even with the new mitigation techniques,
software today is still exploited!

What is needed?

To understand software exploitation,
we need a well understanding of:

Computer Languages,
Operating Systems,
Architectures.

What will be covered?

What we will cover is:

CPU Registers,
How Functions Work,

Memory Management for the IA32
Architecture,

A glance about languages: Assembly and C.

Why do I need those?

Because most of the security holes come
from !

CPU Instructions & Registers

The CPU contains many registers depending on
its model & architecture.

In this lecture, we are interested in three
registers: EBP, ESP, and EIP which is the
instruction pointer.

(Instruction) is the lowest execution term for the
CPU. (Statement) is a high level term that is
compiled and then loaded as one or many
instructions.

Assembly language is the human friendly
representation of the instructions machine code.

CPU Registers Overview

Accumulator

Base Index
Counter

Data

Base Pointer
Stack Pointer
Instruction Pointer

Source Index Pointer

Destination Index Pointer

Some registers can be accessed using there lower and
higher words. For example, AX register; lower word AL and
higher word AH can be accessed separately.

The above is not the complete list of CPU registers.

Functions, High Level View

void|myfunZ|lchar *H) {

printf (“You entered: %s\n", x);

} A function consist of:
void myfunl4char *sty) | Name
char buffer[l6];
strcpy (buffer, str); Parameters (or arguments)
myfun2 (buffer) ;
} Body

int|main{lint argc, char *argv([]]) { Local variable definitions

if (argc > 1)

myfunl (argv[1l]); Return value type

else printf (“No arguments!\n");

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)
myfunl (argv([1]);
else printf (“No arguments!\n");

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {

if (argc > 1)

myfunl (argv[1]);
else printf (“No arguments!\n");

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf (“No arguments!\n");

Functions, High Level View

void myfun2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer); Saved Return Positions

}

int main (int argc, char *argv[]) {
PUSH position into

if (argc > 1) the Stack

myfunl (argv[1l]);

else printf (“No arguments!\n");
} myfunl (argv([1l]);

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void|myfunl (char *str)| {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf (“No arguments!\n");
} myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer); Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf (“No arguments!\n");
} myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer); Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf (“No arguments!\n");
} myfunl (argv([1l]);

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf (“No arguments!\n");
} myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfunZ (buffer) ; Saved Return Positions

}

PUSH position into

int main (int argc, char *argv[]) { the Stack

if (argc > 1)

myfunl (argv[1l]);

else printf ("No arguments!\n"); myfun2 (buffer) ;

} myfunl (argv([1l]);

Functions, High Level View

void|myfunZ (char *x)| {

A stack is the best
structure to trace the
} program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf ("No arguments!\n"); myfun2 (buffer) ;

} myfunl (argv([1l]);

Functions, High Level View

void myfun? (char *x) {

A stack is the best
structure to trace the
} program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfunZ (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf ("No arguments!\n"); myfun2 (buffer) ;

} myfunl (argv([1l]);

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf ("No arguments!\n"); myfun2 (buffer) ;

} myfunl (argv([1l]);

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
) program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

: . i «
int main (int argc, char *argv[]) { POP Position out of

if (argc > 1) the Stack
myfunl (argv([1]);

else printf ("No arguments!\n"); myfun2 (buffer) ;

} myfunl (argv([1l]);

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

myfunl (argv[1l]);

else printf (“No arguments!\n");
} myfunl (argv([1l]);

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)

POP Position out of
the Stack

myfunl (argv[1l]);

else printf (“No arguments!\n");
} myfunl (argv([1l]);

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)
myfunl (argv([1l]);

else printf (“No arguments!\n");

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; Current Statement

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)
myfunl (argv([1]);
else printf (“No arguments!\n");

Functions, High Level View

void myfunZ2 (char *x) {
A stack is the best

structure to trace the
J program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[l6]; End of Execution

strcpy (buffer, str);

myfun2 (buffer) ; Saved Return Positions

}

int main (int argc, char *argv[]) {
if (argc > 1)
myfunl (argv([1]);
else printf (“No arguments!\n");

Stack & Stack Frames

There is no “physical” stack inside the CPU. Instead; the CPU uses
the main memory to represent a “logical” structure of a stack.

The operating system reserves a contiguous raw memory space for
the stack. This stack is logically divided into many Stack Frames.

The stack and all stack frames are represented in the memory
upside-down.

A stack frame is represented by two pointers:

Base pointer (saved in EBP register): the memory address that is
equal to (EBP-1) is the first memory location of the stack frame.

Stack pointer (saved in ESP register): the memory address that is
equal to (ESP) is the top memory location of the stack frame.

When Pushing or Popping values, ESP register value is changed (the
stack pointer moves)

Base Pointer (value of EBP) never change unless the current Stack
Frame is changed.

The stack frame is empty when EBP value = ESP value.

Memory Addressing

Main Memory
— | Start of Memory

0x00000000

Top of Stack >

User Space
Stack

Start of Stack>

Top of Memory
OxFFFFFFFF

e e e e e e e e e e o e o e
e e e e e e e e e s e e e e o

Stack & Stack Frames inside

the Main Memory

Main Memory

Start of Memory ! !
1 1
1 1
Top of Stack) — | '
Empty memory of the
___ Stack
Note 1:
- The newest stack frame is Newest Stack Frame
_indexed as , Stack
_the older one , | tac
_And the Oldest | Stack F
Stack Frame is indexed = SUEECIFEITE
Oldest Stack Frame
Start of Stack > , ,
i i
1 1

Top of Memory

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

ESP points to the top
of the current Stack
Frame. And it points
to the top of the
Stack as well.

Whenever a function
is called, a new Stack
Frame is created.
Local variables are
also allocated in the
bottom of the created
Stack Frame.

Start of Memory

Stack Frame O

Top of Memory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To create a new Stack
Frame, simply change

EBP value to be equal
to ESP.

Start of Memory

Stack Frame O

Top of Memory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

Now EBP = ESP, this
means that the

Newest Stack Frame
is empty. The
previous stack frame
now is indexed as
Stack Frame 1

Start of Memory

Stack Frame O

Stack Frame 1

Top of Memory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

Now EBP = ESP, this
means that the

Newest Stack Frame
is empty. The
previous stack frame
now is indexed as
Stack Frame 1

Let’s try again. This time
we should save EBP value
before changing it.

Start of Memory

But WAIT!
Stack Frame 1
base is lost!

Stack Frame O

Stack Frame 1

Top of Memory

Main Memory

nty memory of the
Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Main Memory
Start of Memory

Empty memory of the
Stack

StackFrameo| "~ "~ "~

Top of Memory

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Now change the value
of EBP.

Start of Memory

Stack Frame O

Top of Memory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

The Current Stack

Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Now change the value
of EBP.

PROLOGUE is:
Creating new Stack

Frame then allocating
space for local
variables.

Start of Memory

Stack Frame O

Stack Frame 1

Top of Memory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

Main Memory
The Current Stack Start of Memory

Frame is always the
Newest Stack Frame

PUSH and POP
operations affect ESP Empty memory of the
value only. Stack

We don’t need to save

ESP value for the m

previous stack frame, Stack Frame 0

because it is equal to
the current EBP value m

Stack Frame 1

Top of Memory

Managing Stack Frames

Main Memory
The Current Stack Start of Memory

Frame is always the
Newest Stack Frame

To empty out the
current Stack Frame, Empty memory of the
ESP value should be Stack

set to the same value

of EBP
Stack Frame 0

Stack Frame 1

Top of Memory

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To empty out the
current Stack Frame,
ESP value should be
set to the same value
of EBP

To delete the current
Stack Frame and
return back to the
previous one, we
should POP out the
top value from the
Stack into EBP.

Start of Memory

Stack Frame O

Stack Frame 1

Top of Memory

Main Memory

Empty memory of the
Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To empty out the
current Stack Frame,
ESP value should be
set to the same value
of EBP

To delete the current
Stack Frame and
return back to the
previous one, we
should POP out the
top value from the
Stack into EBP.

Start of Memory

EPILOGUE is:
Emptying the
current stack

frame and

deleting it, then
returning to the
calling function

Stack Frame O

Top of Memory

Main Memory

Empty memory of the
Stack

Functions, Low Level View
- Understanding the Process -

@ PuUsH arguments PUSH arguments
A simple (if any) (if any)
function PUSH EIP
call in a Call the function Jump to function’s
high level first instruction
lariguage is PUSH EBP
not a
simple PROLOGUE Set BBP = ESE
operation PUSH local variables

(if any)

as it seems.

Execute the function

Execute the function

POP out all local
variable

add(x, y); | — EPILOGUE

POP EBP

POP EIP
POP arguments

POP arguments

Functions, Low Level View
- Understanding the Process -

Each PUSH operation must be
reversed by a POP operation
somewhere in the execution

Performing (PUSH arguments) is
done by the caller function.

Arguments are pushed in a
reverse order.

Performing (POP arguments) can
be done by the caller or the callee
function. This is specified by the
(call type) of the callee function

Return value of the callee is
saved inside EAX register while
executing the function’s body

PUSH arguments
(if any)

PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

PUSH local variables
(if any)

Execute the function

POP out all local
variable

POP EBP

POP EIP
POP arguments

Functions, Low Level View
- Call Types -

Programming languages provide a mechanism to
specify the call type of the function.
(Call Type) is not ().

The caller needs to know the call type of the callee to
specify how arguments should be passed and how
Stack Frames should be cleaned.

There are many call types; two of them are commonly
used in most programming languages:

cdecl: the default call type for C functions. The
caller is responsible of cleaning the stack frame.

stdcall: the default call type for Win32 APIs. The
callee is responsible of cleaning the stack frame.

Some call types use deferent steps to process the
function call. For example, fastcall send arguments
within Registers not by the stack frame. (Why?)

Functions, Low Level View
- Assembly Language -

PUSH arguments
(if any)

PUSH EIP

Each of these steps are processed by one
or many instructions.

Jump to function’s

As like as other programming languages;
pros S sUas first instruction

assembly provides many ways to perform

the same operation. Therefore, the PUSH EBP
disassembled code can vary from one Set EBP = ESP
compiler to another. PUSH local variables

(if any)

Execute the function

POP out all local
variable

Now we are going to introduce the
default way for performing each of these
steps using assembly language.

POP EBP

POP EIP
POP arguments

caller

callee

caller

Functions, Low Level View
- Assembly Language -

push
push

call
_ push
mov

push

cdecl

<arg2>
<argl>

<callee>

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

push
push

call

push
mov
push

stdcall

<arg2>
<argl>

<callee>

ebp

ebp, esp
<default
value of
local
variable>

<args size>

PUSH arguments
(if any)

PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

PUSH local variables
(if any)

Execute the function

POP out all local
variable

POP EBP

POP EIP
POP arguments

Functions, Low Level View
- General Trace -

cdecl

push <arg2> CEP

push <argl>

]]

1 1

1 1

]]

l l

EIP register always i i
instruction to be : l

push ebp 4 0O h [:
nov ebp, esp executed. Once the ! !
push <default CPU executes the i i
value of instruction, it i i

local automatically moves i i
variable> EIP forward. i i

]]

Caller Stack Frame | _ _ |

pop ecx __Eop I 4
1
1

pop ecx i

Functions, Low Level View
- General Trace -

push
push

cdecl

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local
variable>

pop
pop

ecx
ecx

(Gaw

Functions, Low Level View
- General Trace -

push <default
value of
local
variable>

cdecl : \

push <arg2> (call) actually 5
push <argl> pushes EIP value | i i
g oo ||
unconditional jump | | i

bl el;p to the callee (by i]
mov . €dP, €SP changing EIP value) | i i

pop ecx
pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>

push ebp EIP
mov ebp, esp
push <default

value of

local

variable>

Caller EIP
<argl>
<arg2>

pop ecx
pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>

push ebp
mov ebp, esp EIP
push <default

value of

local

variable>

EBP value
Caller EIP
<argl>
<arg2>

pop ecx
pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

Let’s say we have

call <callee> one local variable of

push ebp type int.
mov ebp, esp
push <default EIP
value of
local
variable>

EBP value
Caller EIP
<argl>

<arg2>

pPop ecx Lo e
pop ecx i '

Functions, Low Level View
- General Trace -

push
push

call <callee>

push
mov
push

cdecl

<arg2>
<argl>

ebp

ebp, esp
<default
value of
local
variable>

Start of Memory

ESP may change inside the
callee body, but EBP does
not change. Therefore, EBP
location is used to locate
variable and arguments.

pop
pop

ecx
ecx

Top of Memory

zero

EBP value

Caller EIP
<argl>

<arg2>

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>

push ebp

mov ebp, esp

push <default
value of
local
variable>

pop ecx
pop ecx

Start of Memory

ESP can change in the callee
body, but EBP does not
change. Therefore, EBP
location is used to locate
variable and arguments.

EBP -4
Remember that " EBP

each row of this

stack graph is
: ___EBP+8
32bits (4 bytes) ShEaE

EBP + 12

Top of Memory

zero

EBP value

Caller EIP
<argl>

<arg2>

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>

push ebp

o e ep 3 zero

push <default m S]
value of — va Eu:[eP
local At the end of the a< er1>

i ar
variable> Caﬂee, <argz>
EIP EPILOGUE is g
processed.

Cleaning variable

space is made by

Pop ecx) o P
pop s a POP operation. i .

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>

push ebp
mov ebp, esp

push <default
T ESP 4 EBP
local
variable>

EBP value
Caller EIP
<argl>

<arg2>

Now caller base
EIP EBP should be
retrieved

pPop ecx Lo e
pop ecx i '

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl> Here comes the deference

between cdecl and stdcall

push ebp
mov ebp, esp
push <default

ret instruction
simply pops a value
from the stack and

Ialue e save it in EIP, that m
ocal should direct the

Caller EIP

<argl>

variable> execution back to <arg2>
the caller i
EIP

pop ecx B]
I ' I
I . I

pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl> Here comes the deference

between cdecl and stdcall

push ebp
mov ebp, esp
push <default

value of
local
variable>

Now the caller is
responsible of
cleaning the stack
from passed
arguments using
POP operations.

pop ecx EIP
pop ecx

Functions, Low Level View
- General Trace -

push
push

cdecl

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local
variable>

Here comes the deference
between cdecl and stdcall

Now the caller is
responsible of
cleaning the stack
from passed

POP operations.

pop
pop

ecx
ecx

arguments using

EIP

Functions, Low Level View

push
push

call <callee>

push

mov
push

- General Trace -

cdecl

<arg2>
<argl>

ebp

ebp, esp
<default
value of
local
variable>

Here comes the deference
between cdecl and stdcall

pop
pop

ecx
ecx

Functions, Low Level View
- General Trace -

push <arg2>
push <argl> Here comes the deference

between cdecl and stdcall

push ebp ret instruction

mov ebp, esp proceeded by an

push <default integer value will
value of add that value to
local ESP immediately Caller EIF
variable> after performing <argl>

POP EIP <arg2>

Functions, Low Level View
- General Trace -

push
push

<arg2>
<argl>

call <callee>

push
mov
push

ebp

ebp, esp
<default
value of
local
variable>

<args size>

Here comes the deference
between cdecl and stdcall

Now EIP is
changed, but the
CPU did not finish
executing the
instruction. It will
add <args size>
value to ESP.

In this example, we
have two 32bits

arguments (8 bytes) m

Functions, Low Level View

push
push

- General Trace -

<arg2>
<argl>

call <callee>

push

mov
push

<args size>

ebp

ebp, esp
<default
value of
local
variable>

Here comes the deference
between cdecl and stdcall

The stack has been
cleaned by the
callee. Now
execution is back to
the caller.

Functions, Low Level View
- Code Optimization -

Compilers do not generate the default code like
previous example. They use intelligent methods
to optimize the code to be smaller and faster.

For example, instructions mov and xor can be
used to set EAX register to zero, but xor is
smaller as a code byte. Therefore, compilers use
xor instead of mov for such scenarios:

mov eax, O - code bytes: B8 00 00 00 00

XOr eax, eax - code bytes: 3C 00
Discussing code optimization is out of the scope
of this course, but we are going to discuss few

tricks that you will see in the code generated by
GCC for our examples.

Functions, Low Level View
- Code Optimization -

push
mov
push

cdecl
ebp

ebp, esp
<default
value of
local
variable>

EIP

These instructions are going
to be executed by the callee.
Let’s assume that callee is
going to make another call
to a function foo that require
1 integer argument. callee
will set it’s local integer
variable to 7 then send
double it’s value to foo

Functions, Low Level View
- Code Optimization -

cdecl

mov
mov
Yele!

[ebp_4]/ 7
ecx, [ebp-4]
ecx, ecx

ca1l _<too> N

pop

ecx

void callee(int argl)
int vl1;
vl = 7;
foo(v1l*2);

} i

{

Before we continue;
let’s take a look on

the stack memory

Functions, Low Level View
- Hint about Endianness -

Functions, Low Level View
- Hint about Endianness -

Start of Memory

little-endian big-endian

In little-endian
architect (like intel
processors); multi-
byte values are
filled starting from
the least
significant byte. In
big-endian (like
SPARC processors)
they are filled in a
reverse order
(starting from most
significant byte).

Top of Memory

Functions, Low Level View
- Code Optimization -

cdecl

mov
mov
add

[ebp_4]/ 7
ecx, [ebp-4]
ecx, ecx

<E'P

We can see that the default
value O that was pushed in
the epilogue section was not
used. Compilers (like in C)
do not push a default value.
Instead; they reserve the
space by moving ESP
register

Also, instead of performing
POP to clean local variables
space; we can move ESP to
empty the stack frame

Functions, Low Level View
- Code Optimization -

cdecl

mov
mov
add

[ebp_4]/ 7
ecx, [ebp-4]
ecx, ecx

ca1l _<too> N

pop

ecx

ESP will move to reserve
space for the local variable,
but that space is still not
initialized.

Now you know exactly why
uninitialized variables in C
will contain unknown
values (rubbish) ;)

Another thing we can do is
using the instruction
leave which do exactly like

these two instructions

Functions, Low Level View
- Code Optimization -

cdecl

Compilers read the code in i i

many passes before [:

generating object-codes. One i i

of the thing the compiler do | | |

mov [ebp-41, 7 is calculating needed space | ! !
i i

a a

a a

l l

mov ecx, [ebp-4] || for all arguments of called
add ecx, ecx functions. In our example,

i ds 4 byt
st s
<E'P

leave
ret push is a slow instruction. |f=-=-=-=-=-----
Therefore, the compiler |77 ° 777" "

reserves the arguments A |
. . . 1 . 1
space in the epilogue section | !]

Functions, Low Level View
- Code Optimization -

cdecl

1 1

If foo takes two arguments, i i

then EBP-8 is the first one, | | |

and EBP-12 is the second. l I

mov [ebp-4], 7 (same as performing push i i
a a

a a

a a

I I

ule)v ecx, [ebp-4] || for 2nd then 1St argument)
add ecx, ecx

[ebp-8], ecx
e @

leave

ret

[ebp-8] is for surethe |p—-=—====-=---

argument to passed. Butwe |77 77777 "1
can replace it with [esp] in

this scenario only. (Why?)

Functions, Low Level View
- Code Optimization -

cdecl cdecl
push ebp push ebp
mov ebp, esp mov ebp, esp
sub esp, 8 push 0
mov [ebp-4], 7 mov [ebp-4], 7
mov ecx, [ebp-4] mov ecx, [ebp-4]
add ecx, ecx add ecx, ecx

mov [esp], ecx push ecx

call <foo>

call <foo>

leave Pop ecx
ret

Functions, Low Level View
- Example from GCC -

void myfunl (char *str) |
push ebp

mov ebp, esp

char buffer[16];

sub esp,

strcpy (buffer, str);

mov eax, DWORD PTR [ebp+t8]
mov DWORD PTR [esp+4],eax
lea eax, [ebp-16]

mov DWORD PTR [esp],eax
call 0x80482c4 <strcpy@plt>

myfunZ (buffer) ;

lea eax, [ebp-16]

mov DWORD PTR [esp],eax
call 0x80483b4 <myfun2>
/

leave

ret

The function myfun1 require
16 bytes for the local array.

strcpy require 8 bytes for it’s
arguments

myfun2 require 4 bytes for it’s
arguments

The compiler made a
reservation for 24 bytes (0x18)

which is 16 for array + 8 for
maximum arguments space

Functions, Low Level View
- Example from GCC -

void myfunl (char *str)

push
mov

ebp

ebp, esp

char buffer[16];

sub

esp, 0x18

strcpy (buffer, str);,

mov
mov
lea
mov
call

eax, DWORD PTR
DWORD PTR
eax, [ebp-16]
DWORD PTR

myfunZ (buffer) ;

lea
mov
call
/
leave
ret

eax, [ebp-16]
DWORD PTR

{

[ebp+8]
[esptd],eax

[esp],eax
0x80482c4 <strcpy@plt>< EIP

[esp],eax

0x80483b4 <myfun2>

By default, EBP+4 points to
the saved EIP of the caller
(main in this example).
EBP points to the saved
EBP by epilogue section.

strcpy takes two
arguments,
destination dst
then source src.

EBP+8 is the sent
value by the caller
main to the callee
myfunl that is
named str in this
code.

dst
src

__EBP

1

| R
1 .

1

1

Functions, Low Level View
- Example from GCC -

void myfunl (char *str) |
push ebp

mov ebp, esp

char buffer[16];,

sub esp, 0x18

strcpy (buffer, str);

mov eax, DWORD PTR [ebp+t8] ESP

mov DWORD PTR [esp+4],eax sr
lea eax, [ebp-16] X
mov DWORD PTR [esp],eax 0
call 0x80482c4 <strcpy@plt> —
myfun2 (buffer) ; =
lea eax, [ebp-16] . EBP |

mov DWORD PTR [esp],eax

call 0x80483b4 <myfun2> < EIP

}

leave myfun? takes one argument x | b — - -1
ret]]

Functions, Low Level View
- Example from GCC -

void myfunZ (char *x) {
1 1

push ebp | ESP
mov ebp, esp
sub esp, 0x8 " EBP
printf (" You entered: %s\n'", x);

mov eax, DWORD PTR [ebp+t8]
mov DWORD PTR [esp+4],eax X
mov ~ DWORD PTR [esp],0x8048520 >
call 0x80482d4 <printf@plt> EIP ¢
} 0)
leave E
ret _8

EPB+8 points to the first argument sent to the current
function. EBP+12 points is the second and so on. But only
one argument used by myfun2. Therefore, EBP+12 points to
an irrelevant location as myfun2 can see.

Can you guess what is currently saved in [EBP+12] ?

Functions, Low Level View
- Example from GCC -

int main(int argc, char *argv/[]){

push ebp : : . i H
MoV ebp, esp main is a function as like as i i
sub esp, 0x4 any other function. [[
if (arge > 1) i i
cmp DWORD PTR [ebp+8],0x1 i i
e .
myfunl (argv/[1]) ; : :
mov eax, DWORD PTR [ebp+12] Can you tell i i
add eax, 0x4 I I
mov eax,DWORD PTR [eax] what these Esp ¥ '
mov DWORD PTR [esp],eax instructions do? “EEp
call 0x80483cf <myfunl> < EIP
jmp 0x804841e <ml>
else printf (“No arguments!\n'") ; <m2>
DWORD PTR [esp],0x8048540 3>
call 0x80482d4 <printf@plt>
} What do these memory
leave locations contain <m1>,

ret <m?2>, and <m3>?

Functions, Low Level View
- Stack Reliability -

Start of Memory

So,

What if we can locate Caller EIP in the
stack and change it using mov or any
other instruction?

What if the new value is a location of
another block of code?

What if the other block of code is
harmful (security wise)?

Bad for the user, good for the Exploit ©

Top of Memory

zero

EBP value

Caller EIP
<argl>
<arg2>

References

All references found at
the end of part 3.

