
Hacking Techniques &

Intrusion Detection

Fall 2012/2013

Dr. Ali Al-Shemery
aka: B!n@ry

Software Exploitation

Prepared by:
Dr. Ali Al-Shemery

Mr. Shadi Naif

Debugging Fundamentals

for Pentesters

Outline – Part 2

• Debugger

– GDB

– Immunity Debugger

• Debuggers Offer?

• Popular Debuggers?

• Which to use?

• Example: Debugging auth.c using gdb

Debugger

• A computer program that lets you run

your program, line by line and

examine the values of variables or

look at values passed into functions

and let you figure out why it isn't

running the way you expected it to.

Debuggers Offer?

• Debuggers offer sophisticated functions such as:
– Running a program step by step (single-stepping mode),

– Stopping (breaking) (pausing the program to examine the
current state) at some event or specified instruction by
means of a breakpoint,

– Tracking the values of variables,

– Tracking the values of CPU registers,

– Attach to a process,

– View the process‟s Memory map,

– Load memory dump (post-mortem debugging),

– Disassemble program instructions,

– Change values at runtime,

– Continue execution at a different location in the program
to bypass a crash or logical error.

Popular Debuggers?

• GNU Debugger (GDB)

• Microsoft Windows Debugger (Windbg)

• OllyDbg

• Immunity Debugger

• Microsoft Visual Studio Debugger

• Interactive Disassembler (IDA Pro)

Immunity Debugger

• A powerful new way to write exploits,
analyze malware, and reverse engineer
binary files.

• It builds on a solid user interface with
function graphing, and a large and
well supported Python API for easy
extensibility.

Did you read that? Python 

Immunity Debugger

Which to use?

• IMO there is no exact answer to this

question, it‟s a matter of comfort!

• Choose the debugger comfortable for

you and helps you with your

debugging process.

Example – Auth.c

• What does auth.c do?
– It takes the first argument from the

command line,

– It then passes this argument to a basic
authentication function for checking,

– If the argument is the correct password, it
prints a success message,

– If the argument isn‟t the correct password, it
prints a failure message.

• There is a bug in the code!

• Let‟s try to discover it.

Auth.c using gdb

• gdb is a command line debugger, not

very user friendly, but very powerful.

• First we need to compile auth.c, then

run auth from within gdb.

• Use gcc:

– gcc –ggdb –O0 auth.c -o auth

Auth.c using gdb - Cont.

• Start auth from within gdb:

– gdb auth

• Run it with no arguments

(gdb) run

• This will give us a Segmentation fault.

• The program now crashes!

• Let‟s find what made the program crash.

Auth.c using gdb - Cont.

• We need to reconstruct the frames on
the stack.

• The frames will show us the function
calling sequence.

• Use the gdb command “backtrace”
(gdb) backtrace

• If you examine the output of the
command you will find that the crash
happened after calling the auth()
function (frame #1)!

Auth.c using gdb - Cont.

• We need to check the instructions in the code
where it has crashed.

• EIP points to the last instruction executed.

• We need to examine the memory and EIP:

• To do that we will use the “x” to display
memory contents:

(gdb) x/5i $eip

• What does all that do????

Auth.c using gdb - Cont.

• “x” is used to display memory content

in various formats,

• “i” is used for displaying instructions

(disassembly),

• “5” is the number of instructions to

display.

Check next slide for “x” formats.

“x” – Examine Memory

Format Description

x hexadecimal

d decimal

o octal

t binary

i instructions

s string

c character

u unsigned

Unit Description

b bytes

w words (4 bytes)

x / <count> <format> <unit>

Auth.c using gdb - Cont.

• The fault occurred at this instruction:

(gdb) x/10i $eip

cmp al, BYTE PTR [edx]

• cmp al, BYTE PTR [edx] compares al with

the byte at the memory address stored

within edx.

• There doesn‟t seem to be an error here!

• Wait, let‟s inspect the register edx and

see what does it hold?

Auth.c using gdb - Cont.

• Let‟s inspect the local variables and
arguments.

• We can use the gdb “info locals” and
“info args” commands:

(gdb) info locals

No symbol table info availabe

(gdb) info args

No symbol table info availabe

Auth.c using gdb - Cont.

• That means there is no debugging information.
(Re-compile to resolve!)

• Quit gdb:

(gdb) q

• Recompile with debugging information enabled:

gcc –g auth.c –o auth

• The –g informs the compile to include symbolic
debugging information within the compiled
binary.

Auth.c using gdb - Cont.

• Let‟s load auth in gdb again:

$ gdb auth

• Now we can list the program code which

is available from the debugging

information.

• For that we use the gdb “list” command:

(gdb) list

– Press Enter if not all the code is shown.

Auth.c using gdb - Cont.

• If you remember the program crashed
when calling the auth() function.

• Let us setup a break point. We can use
the gdb “break” command:
– (gdb) break 13

• Now run the program:
– (gdb) run

• The process execution is suspended
when it reaches our breakpoint. This is
how we made gdb control the execution
process!

Auth.c using gdb - Cont.

• Let us check the arguments values.

• We can use the gdb “print” command for
inspecting variables.
– (gdb) print argv[1]

• argv[1] is the argument passed to the
auth function. And as you can see it‟s
value is 0x0 which is a NULL pointer!

• Continue the execution with the gdb
command “continue”:
– (gdb) continue

Auth.c using gdb - Cont.

• Now if we inspect the registers using the

gdb command “info registers” we see that

edx is holding 0x0 (the NULL pointer).

– (gdb) info registers

– (gdb) x/5i $eip

• This is what is causing the crash, as the

program is comparing to a NULL pointer!

Auth.c using gdb – Summary

• Using gdb we managed to discover the

bug in our code.

• All we need to do to solve this problem

is check for the number of given

arguments before calling the auth()

function!

as simple as that!

Load Configurations

• Tired of always setting your GDB

configurations?

• Use the -x file

• Add your configurations to a file such

as gdb.config and then:

– gdb –x gdb.config auth

Quit GDB Debugging

• Just press „q‟ !

